
Summary of Accelerator Session

Qing Qin (秦庆), IHEP, CAS 2016-01-21

Acknowledgement

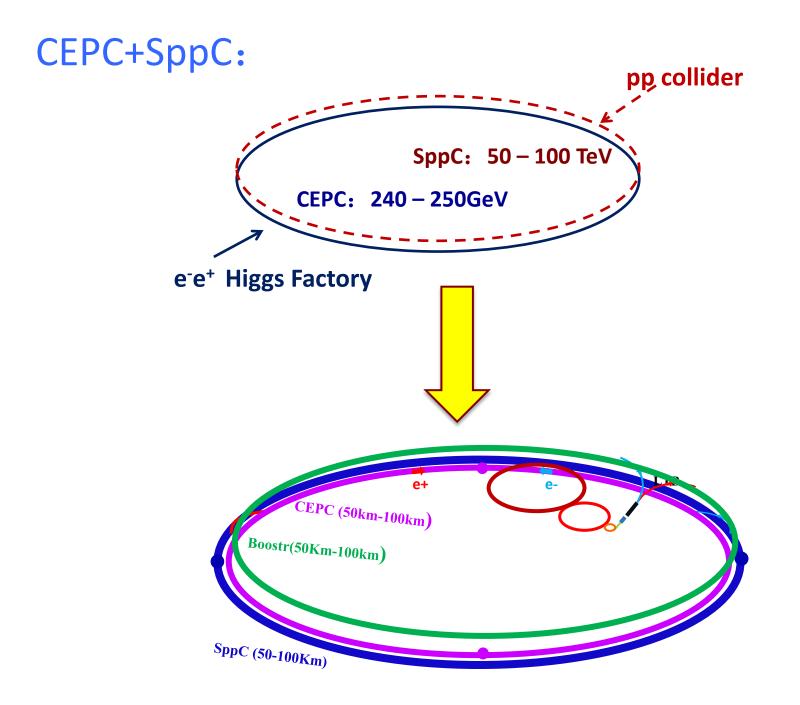
• All materials are from the speakers' slides at the IAS conference

• Henry, Yanjun, Tao, Prudence, et al...

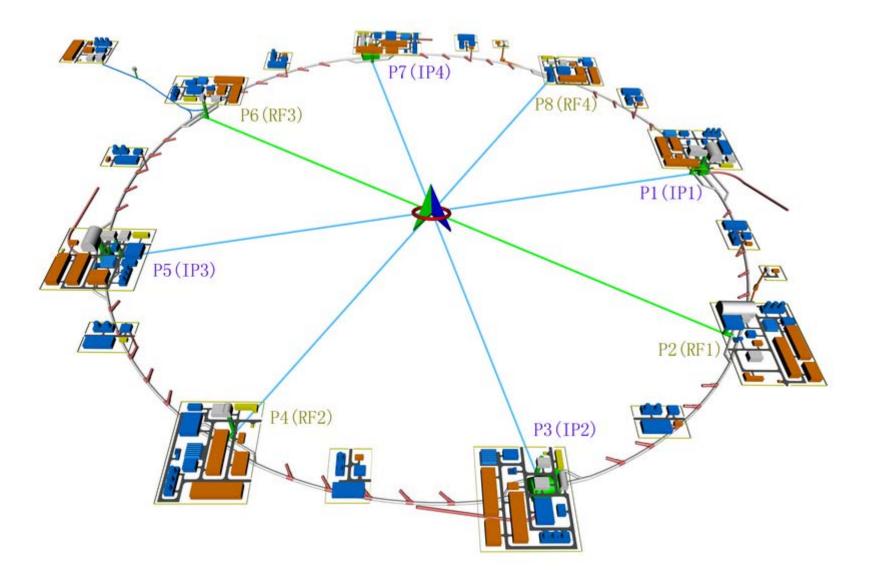
• All participants of the IAS conference

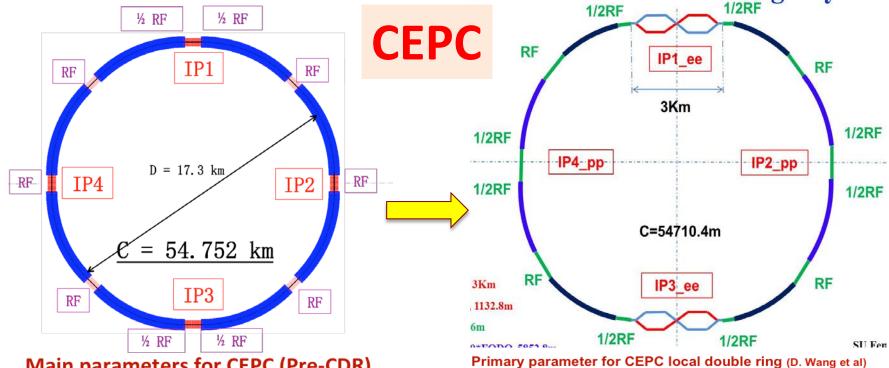
Jan. 19 – 22, 2015, IAS'15 conference, we had:

[Monday, January 19	Tuesday	Wednesday	Thursday
8:00	Registration			
8:40	Welcome (JCFP, local committee)			
9:00	Accelerator (Pedagogical)	Accelerator (Redagogical) Preliminary Conceptual Design CEPC Accelerator of CEPC-SPPC (Weiren Chou) (TBD)		Detectors at 100 TeV (Ludovico Pontecorvo, TBC)
9:40	(Vladimir Shiltsev, TBC)	How to Determine the Tunnel Circumference (Richard M. Talman)	TBD (Haijun Yang)	Detector optimization (Bill Murray, TBC)
10:20	Coffee break	Coffee break	Coffee break	Coffee break
10:40	Experiment (Pedagogical)	Physics Motivation for future machines (Serguei Ganjour, TBC)	TBD (Tao Liu)	Neutrino (Ernest Ma TBC)
11:20	(Ashutosh Kotwal, TBC)	Physics at CLIC (Frank Simon)	Top-Higgs couplings measurements at the LHC and beyond (Aurelio Juste)	Testing Low Scale Sterile Neutrino signals (Oliver Fischer)
12:00	Reception	W and Z Boson Physics at HL-LHC and FCCee (Roberto Techini)	Higgs self coupling measurement at 100 Tev Collider (Weimin Yao)	Non-SUSY (Jing Shu)
12:40		Self-arranged lunch	Self-arranged lunch	Self-arranged lunch
14:00	Theory (Pedagogical)	Higgs Prospects at HL-LHC (Aleandro Nisati, TBC)	Heavy Flavor Physics at Future Colliders (Caidian Lv)	Discussion panel (Accelerators) Steve Gourley and Weiren Chou
14:40	(Chris Quigg)	Higgs physics at Higgs Factory (Jianmin Qian)	TBD (George Hou)	
15:20	Coffee break	Coffee break	Coffee break	Coffee break
15:40	Distinguished Lecture	Dark matter at 100 TeV pp collider (Liantao Wang)	Parallel talks: Felix Yu, Hongbo Zhu, Kechen	Discussion panel (Physics)
16:20	(Yifang Wang)	Dark matter (Yuan-Hann Chang, TBC)	Wang, Rostislav Konoplich, Arely Cortes Gonzalez, Yunhai Cai,	Ian Hinchliffe, Ashutosh Kotwal, TBD
17:00	(end of day)	SUSY (Albert De Roeck)	Huirong Qi, Haibo Li, Tao Hu, Jiaying Gu, Ying Li	Summary talk (Organization committee) Nima Arkani-Hamed (TBC)
17:40		(end of day)		Closing address (Chair)


This year, we have:

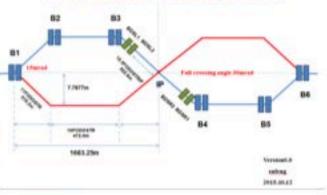
	Me	onday	Tue	sday	Wed	nesday	Thursday	
	18	l-Jan	19	Jan	20)-Jan	21-Jan	
08:30- 08:50	Conference	e Registration						
08:50-09:00	Welcom	e Remarks						
	Venue: IAS Leo	ion M1 ture Theater (LT) ingelo Mangano]	Session Tu 1 Venue: IAS Lecture Theater (LT) [Chair: JoAnne Hewett]		Session W1 Venue: IAS Lecture Theater (LT) [Chair: Christopher Tully]		Session Th 1 Venue: IAS Lecture Theater (LT) [Chair: Tao Liu]	
9:00 9:40	(Chrit Plenary #02 Phys (Matth	ientific Overview s Quigg) ics at Higgs Factory ew Reece)	Plenary #05, Precision Higgs physics at 100 TeV P (Michelangelo, Mangano) Plenary #06 New Physics at 100 TeV (Matthew mcCullough)		Physics (Ji Plenary #10 Status of the S (Albert	nents for Precision Higgs Boson Inming Qian) itudies for a FCC-hh Detector de Roeck)	LHC Resent Search Results (Serguei Ganiour) Theory Summary (Shufang Su)	
10:20	Chair's	conclusion		onclusion		conclusion	Chair's conclusion	
10:30	Coffe	e Break	Coffee	Brack	Coffe	e Break	Coffee Break	
	Venue: IAS Leo [Chair: W	ion M2 ture Theater (LT) eiren Chou) ry of Circular e+e- Colliders	Venue: IAS Lect [Chair: Y	n Tu 2 ure Theater (LT) unhai Cai) in pp and a Revisit to ee	Venue: IAS Lec [Chair:	on W2 ture Theater (LT) Shan Jin] I Linear Collider (ILC): Technical	Sexion Th 2 Venue: IAS Lecture Theater (LT) [Chair: Joao Guimaraes da Costa] Accelerator Summary	
11:00	Emphasizing Future Ap Plenary #04 CEPC Status ar (Jie	plications (John Seeman) d International Collaboration Gao)	(Weire Plenary #8 Statu: (Katsund	n Chou) i of the FCC Study ibu Oide)	Plenary #12, (Yuanr	ct (Akira Yamamoto) CEPC detector ning Gao)	(Qing Qin) Experiment/Detector Summary (John Hauptman)	
12:20		conclusion		onclusion	shair's (conclusion	Choirig conclusion	
12:30		sistered Participants only		ged Lunch	Coll of	igea contri	Self-arranged Lunch	
	Parallel Sessions (Accelerator) Venue: IAS LT [Chair: Jie Gao]	Parallel Sessions (Experiment) Venue: IAS 2042 [Chair: Marcel Stanitzki]	Parallel Sessions (Detector) Venue: IAS LT [Chair: John Hauptman]	Parallel Sessions (Theory) Venue: IAS 2042 [Chair: Matthew Reece]	Parallel Sessions (Accelerator) Venue: IAS LT [Chair: Marica Biagini]	Parallel Sessions (Theory/Experiment) Venue: IAS2042 [Chair: Shufang Su]	Forum Session Venue: IAS Lecture Theater [Chair: Henry Tye]	
14:00 14:25	Richard Talman (14:00 - 14:30) Dou Wang	Chris Tully (14:00 - 14:25) Guido Tonelli	Hongbo Zhu (14:00 - 14:25) Massimo Caccia	Michael Spannowsky (14:00 - 14:25) Maxim Perelstein	Yongjun Li (14:00 - 14:30) Yuan Zhang	Christophe Grojean (14:00 - 14:25) Ian Low	Forum Discussion	
14:30 14:10 15 10	(14:30 - 14:50) Anton Bogomvagkov (14:50 - 15:10) Catia Milardi (15:10 - 15:30)	(14:25 - 14:50) Mangi Ruan 14:50 - 15:15)	(14:25 - 14:50) Xiangming Sun (14:50 - 15:15)	(14:25 - 14:50) Jan Hajer (14:50 - 15:15)	(14:30 - 14:50) Huiping Geng (14:50 - 15:10) Ivan Koop (15:10 - 15:30)	(14:25 - 14:50) itefan Antusch 14:50 - 15:15)	Leader: Henry Tye Panel members: Jie Gao, I Hinchliffe, Michelangelo Mang John Seeman, Marcel Stanitzki, Liantao Wang, more (14:00 - 15:30)	
15:15	Coffee Break (15:30 - 16:00)	(offee Break (15:15 - 15:45)		Break 15:45)	Coffee Break (15:30 - 16:00)	Coffee Break (15:15 - 15:45)	Coffee Break (15:30 - 16:00)	
15:30	Parallel Sessions (Accelerator) Venue: IAS LT [Chair: Eugene Levichev]	Parallel Sessions (Experiment) Vi nue: IAS 2042 [Chair: Marcel Stanitzki]	Parallel Sessions (Detector) Venue: IAS LT [Chair: John Hauptman]	Parallel Sessions (Theory) Venue: IAS 204: [Chair: Maxim Perelstein]	Parallel Sessions (Accelerator) Venue: IAS LT [Chair: Weiren Chou]	Parallel Sessions (Theory/Experiment) Vinue: IAS2042 [Clair: Tom Rizzo]	Closing Session Venue: IAS Lecture Theater [Chair: Henry Tye]	
15 45 16:00	Yunhai Cai	Aurelio Juste 15:45 - 16:10)	Marcel Stanitzki (15:45 - 16:10)	Zhen Liu (15:45 - 16:10)	Kaoru Yokoya	Wei-shu Hou 15:45 - 16:10)		
16:0 16:20	(16:00 - 16:20) Michael Koratzinos	Shin-shan Yu (16:10 - 16:35)	Huirong Qi (16:10 - 16:35)	(15:45 - 16:10) Cheng-wei Chiang (16:10 - 16:35)	(16:00 - 16:20) Nikolay Muchnoi	(16:10 - 16:35)	Closing Talk No. 1 Han Tao (TBC) (16:00 - 16:45)	
16:3 16:40	(16:20 - 16:40) Dmitry Shatilov (16:40 - 17:00)	Xin Chen (16:35 - 17:00)	Haijun Yang (16:35 - 17:00)	Qishu Yan (16:35 - 17:00)	(16:20 - 16:40) Jingyu Tang (16:40 - 17:00)	Katz Andrey (16:35 - 17:00)	Closing Remarks (16:45 - 17:00)	
17:00 17:10 17:20	Kazuhito Ohmi (17:00 - 17:20) Eugene Levichev	Xual Zhuang (17:00 - 17:25)	Sehwook Lee (17:00 - 17:25)	Oliver Fischer (17:00 - 17:25)	Feng Su (17:00 - 17:20) Telnov Valery	Gang Ll (17:00 - 17:25)		
17:25 17:30 17:40 17:50	(17:20 - 17:40) Stephen Gourlay		Michele Cascella (17:25 - 17:50)	Ning Chen (17:25 - 17:50)	(17:20 - 17:40) Qingjin Xu	Kal-feng Chen (17:25 - 17:50)		
	(17:40 - 18:00)				(17:40 - 18:00)			


During the conference, we have:


- 25 talks (5 plenary + 20 parallel)
 - 2 overview talks + 5 status talks
 - 16 AP talks + 2 Magnet talks
- Forum & Discussions on Accelerator

• Very informative & fruitful

CEPC-SppC on Site

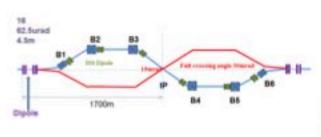

Main parameters for CEPC (Pre-CDR)

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	Circumference [C]	m	54420
Number of IP[N _{IP}]		2	SR loss/turn [U ₀]	GeV	3.11
Bunch number/beam[n ₈]		50	Bunch population [Ne]		3.71E+11
SR power/beam [P]	MW	51.7	Beam current [I]	mA	16.6
Bending radius [r]	m	6094	momentum compaction factor [a _p]		3.39E-05
Revolution period [T ₀]	s	1.82E-04	Revolution frequency [f ₀]	Hz	5508.87
emittance (x/y)	nm	6.12/0.018	b _{IP} (x/γ)	mm	800/1 2
Transverse size (x/y)	mm	69.97/0.15	x _{x,y} /IP		0.116/0.082
Beam length SR [S _{s.SR}]	mm	2.17	Beam length total [S _{s.tot}]	mm	2.53
Lifetime due to Beamstrahlung	min	80	lifetime due to radiative Bhabha scattering [t _l]	min	52
RF voltage [V _{rf}]	GV	6.87	RF frequency [f _{rf}]	MHz	650
Harmonic number [h]		117900	Synchrotron oscillation tune $[n_s]$		0.18
Energy acceptance RF [h]	%	5.98	Damping partition number [Je]		2
Energy spread SR [Sd.SR]	%	0.13	Energy spread BS [SdBS]	%	0.08
Energy spread total $[s_{d,tot}]$	%	0.16	n _g		0.23
Transverse damping time [n _x]	turns	78	Longitudinal damping time [n _e]	turns	39
Hourglass factor	Fh	0.692	Luminosity /IP[L]	cm ⁻² s ⁻¹	2.01E+34

	Pre-CDR	H-high lumi.		H-low	power	z
Number of IPs	2	2	2		2	
Energy (GeV)	120	120)	12	20	45.5
Circumference (km)	54	54		5	4	54
SR loss/turn (GeV)	3.1	2.9	6	2.9	96	0.062
Half crossing angle (mrad)	0	14.5	8.9	11.5	8.7	16.5
Piwinski angle	0	2	3.1	2	2	2.6
N_/bunch (1011)	3.79	3.79	1.32	2.81	2.0	0.37
Bunch number	50	50	144	40	57	1100
Beam current (mA)	16.6	16.9	16.9	10.1	10.1	36.2
SR power /beam (MW)	51.7	50	50	30	30	2.2
Bending radius (km)	6.1	6.2	6.2	6.2	6.2	6.1
entum compaction	3.4	3.0	2.3	2.6	2.5	5.4
[x] x/y (m)	0.8/0.0012	0.306/0.0012	0.058/0.0016	0.22/0.001	0.115/0.001	0.3/0.001
Emittance x/y (nm)	6.12/0.018	3.34/0.01	2.32/0.0058	2.67/0.008	2.56/0.0078	1.18/0.0069
Transverse [M]1P (um)	69.97/0.15	32/0.11	11.6/0.097	24.3/0.09	17.6/0.088	18.8/0.083
[₩],/IP	0.118	0.04	0.01	0.04	0.028	0.02
[W]_/IP	0.083	0.11	0.11	0.11	0.11	0.042
$V_{RF}(GV)$	6.87	3.7	3.6	3.6	3.7	0.28
f_{BE} (MHz)	650	650	650	650	650	650
Nature [x]. (mm)	2.14	3.3	3.0	3.2	3.0	3.0
Total [x]_ (mm)	2.65	4.4	4.0	4.2	4.0	3.0
HOM power/cavity (kw)	3.6	3.3	1.0	1.5	0.95	0.73
Energy spread (%)	0.13	0.13	0.13	0.13	0.13	0.05
Energy acceptance (%)	2	2	2	2	2	
Energy acceptance by RF (%)	6	2.2	2.2	2.2	2.4	2.0
n _{f2}	0.23	0.49	0.46	0.47	0.46	0.08
Life time due to	47	53	32	41	32	
beamstrahlung cal (minute)						
F (hour glass)	0.68	0.73	0.89	0.69	0.7	0.83
L _{mar} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.04	2.97	2.75	2.03	2.07	1.25

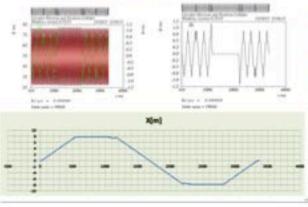
· TEINING

CEPC Partial Double Ring Layout

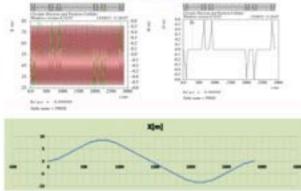


· International

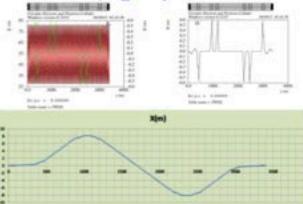
82 63 1004.1 Full crowning magic Munrad 1.4867% 00010.1 840100,1 84 85 5443.43m tat & UPODIS 404.8m (9F0000) Make (PRODUCE Versionii, I MOMENTE (10.0FODID) saleng.


CONTRACTOR OF STREET, STREET,

CEPC Partial Double Ring Layout



Terrise 8.3 uniting. 20105.30.35


For CEPC 120GeV beam: >Max. deflection per separator is 96µrad. Using Dipole after seperator to acquire 15 mrad Orbit (DR_RING_e1) Version0.0

Orbit (DR_RING_e1) Version0.1

A PRACE ADDRESS Orbit (DR RING e1) Version0.2

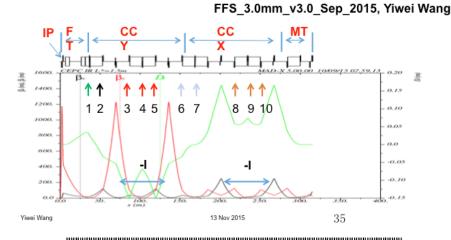
· DEPTINIATION

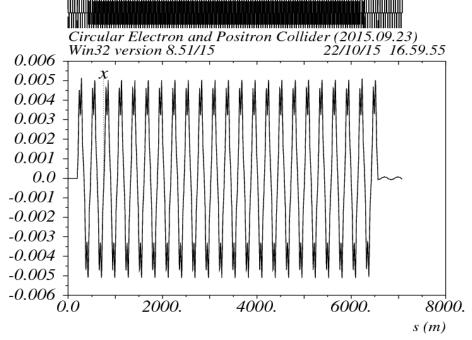
Dipole Strength Version0.0

	Argielmad	Um)	Wheeler)	C) (T/H)	N (1)	Eb(KeV)	Kettin
80	1.506	19.6	5590.42	400	0.07155	685.173	34.9578
81	-7.5	19.6	2613.35	400	0.15306	1465.71	74,7813
82	7.5	19.6	2613.33	400	0.15306	1465.71	74.7813
83	2,499894	19.6	7840.35	400	0.05102	488.551	24.9263
BOSL1	-19.865386	19.6	986.641	400	0.40542	3482.26	198.075
BDSL2	29.865598	19.6	636.273	400	0.60950	3836.59	297.785
80582	-29.865596	19.6	656.273	400	0.60950	2836.59	297.785
BDSR1	19.865686	19.6	986.641	400	0.40542	1682.26	198.075
84	-2.499894	19.6	7840.33	400	0.05102	488.551	24.9263
85	-7.5	19.6	2613.33	400	0.15306	1465.71	74,7833
84	7.5	19.6	2613.33	400	0.15306	1465.71	24,7833

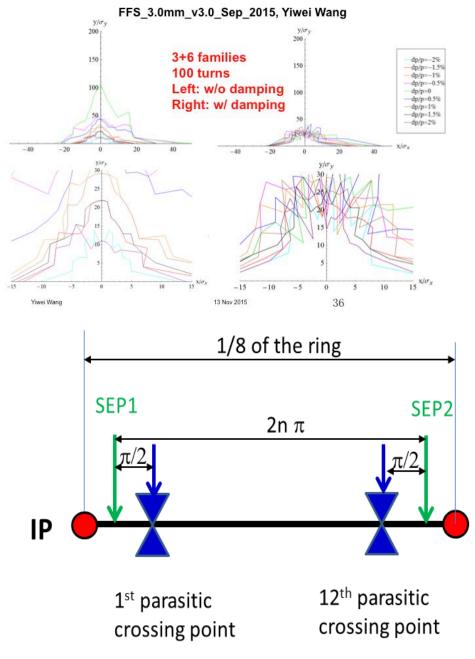
Dipole Strength Version0.1

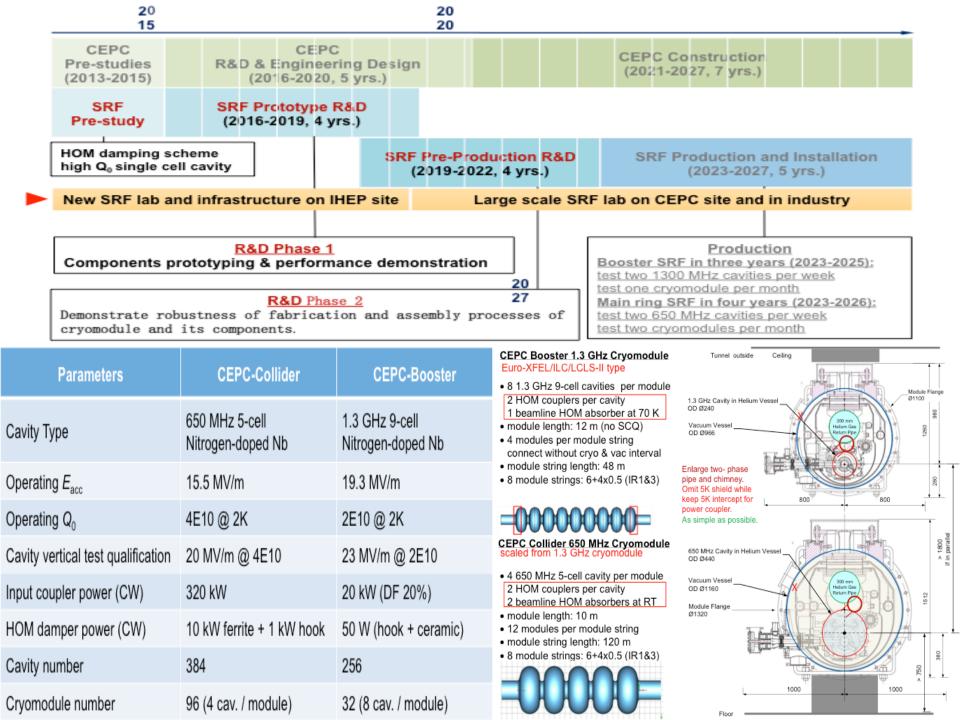
	Argirinead	umi	Sha(m)	Brholt5/ c) (1/m)	8(1)	ENGREVI	KeV/m
80	1.506	25.6	5590.42	400	0.07155	685.173	34.9578
81	-5.0	19.6	3920.0	400	0.50204	977.543	49.8543
810511	8.8336755	29.6	1973.09	400	0.20273	1941.32	99.0417
810512	-14.93823	29.6	1812.51	400	0.30476	2918.38	148.897
82	5.0	29.6	1920.0	400	0.10204	977.143	45,8542
8205R1	-9.933058	15.6	1973.09	400	0.20275	1941.32	99.0417
820582	14.99292	18.6	1312.51	400	0.30476	2918.88	348.897
83	5.0	28.6	3920.0	400	0.20204	977.548	45.8542
0305R1	-9.93356	19.6	1973.09	400	0.20275	1941.32	99.0417
810542	14.93323	19.6	1512.51	400	0.30476	2018.38	148.897

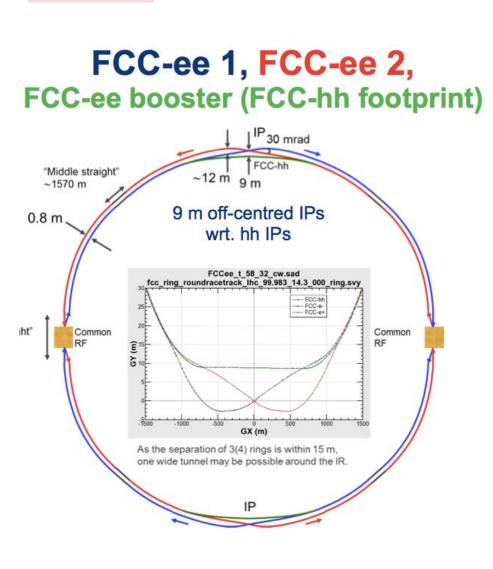

Dipole Strength Version 0.2

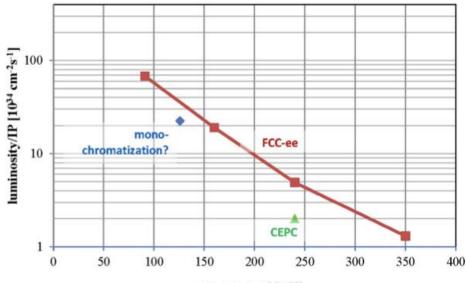

	Angir(mead)	Lord	Bio(m)	Brholiti/ c] (1/m)	*11	ENDIREV)	Reb/m
80	3.506	15.6	5590.4Z	400	0.07155	685.173	\$4.9578
the l	0.0625	4.9	78400	400	0.00510	48.8571	9.97
81.	-4.416	19.8	4438.45	400	0.09013	868.033	44.091
610513	8.023	15.8	2172.75	400	0.18410	1962.96	89,947
RUDIN.Z	-14.187	19.4	1381.55	400	0.28953	2772.85	141.454
82	5.0	18.6	3920.0	400	0.10204	977.343	49.8542
\$205A1	4.513258	19.6	2973.09	400	0.20178	1941.32	99.0417
8201642	14.93292	19.6	1312.51	400	0.30476	2918.38	146.897
83	1.0	38.6	3930.0	400	0.10304	877.543	49.8542
830585	-8.93336	39.8	1973.09	400	0.30278	1941.32	99.0417
830582	14.85329	18.6	1912.51	400	0.30476	2918.38	148.897

CEPC Partial Double Ring Layout

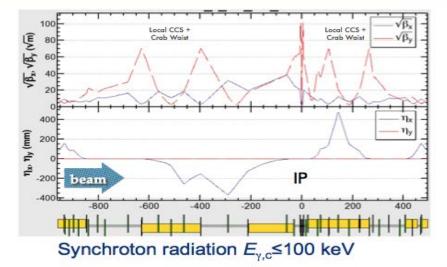

IR Design and sextupoles (Y.W. Wang et al)

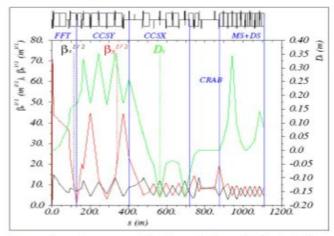

- Idea from Brinkmann
 - correct the high order chromaticity, break down of –I, second order dispersion




CEPC Single Ring DA Study (Y.W. Wang et al)

FCC-ee


c.m. energy [GeV]


parameter		FCC-ee	CEPC	LEP2	
energy/beam [GeV]	45	120	175	120	105
bunches/beam	90000	770	78	50	4
beam current [mA]	1450	30	6.6	16.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	70	5	1.3	2.0	0.0012
energy loss/turn [GeV]	0.03	1.67	7.55	3.1	3.34
synchrotron power [MW]	100			103	22
RF voltage [GV]	0.08	3.0	10	6.9	3.5

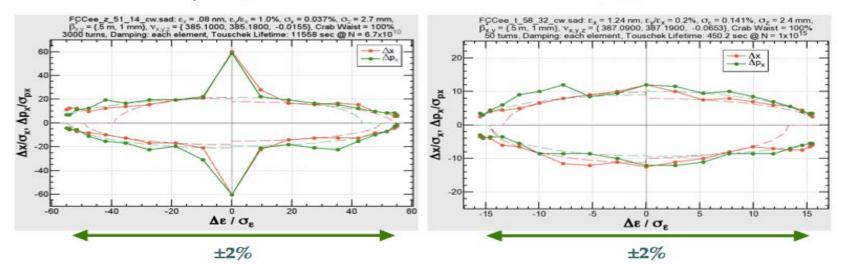
FCC-ee: 2 separate rings & 2 IPs CEPC: single beam pipe version

Interaction Regions: KO 58_32

AB v. 8-1 ($\beta_x^* = 1 \text{ m}, \beta_y^* = 2 \text{ mm}$)

Synchrotron radiation E_{v,c}≤400 keV

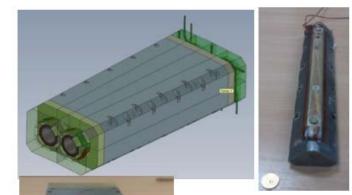
2 IPs		Z 45,5 GeV	W 80 GeV	ZH 120 GeV	tt 175 GeV
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	~140	~42	~10	~4

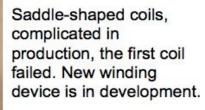

Dynamic Apertures (KO)

 $\beta_{x,y}^* = (0.5 \text{ m}, 1 \text{ mm})$

 $E_{\text{beam}} = 45.6 \text{ GeV}$

3,000 turns


 $E_{\text{beam}} = 175 \text{ GeV}$ 50 turns



SC final focus quadrupole at BINP

Main contributors are Ivan Okunev and Pavel Vobly

Two versions of the FF twin-aperture iron yoke quad prototype with 2 cm aperture and 100 T/m gradient are in production.

E. Levichev

Straight coil, successfully wound and tested (650 A instead of the nominal 400 A)

Also prototyping of CCT quadrupoles has started at CERN (M. Koratzinos, G. Kirby).

Challenges in e+e- circular collider

• Luminosity – beamstrahlung dominated

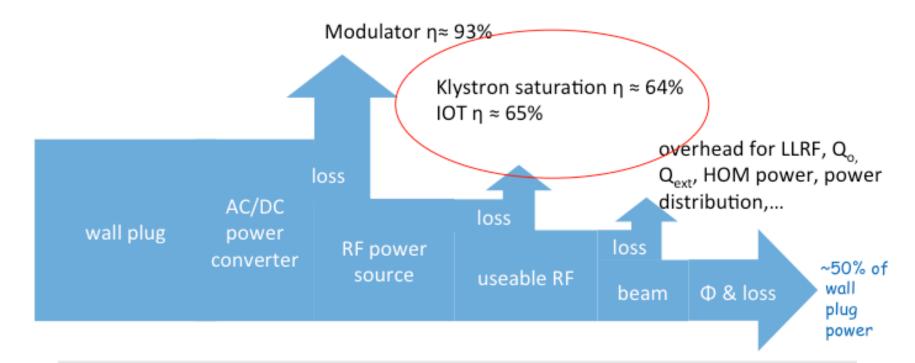
 $\begin{array}{c} \mathcal{L}=3/8\pi \\ 13 \xi \psi \end{array}$

The maximum luminosity is bound by the total power dissipated, the maximum achievable beam-beam parameter, the bending radius, the beam energy, the amount of vertical squeezing $\beta \downarrow \gamma \uparrow \ast$, and the hourglass effect, a geometrical factor (which is a function of σ_z and $\beta \downarrow \gamma \uparrow \ast$)

• Power consumption

For 100MW beam power:

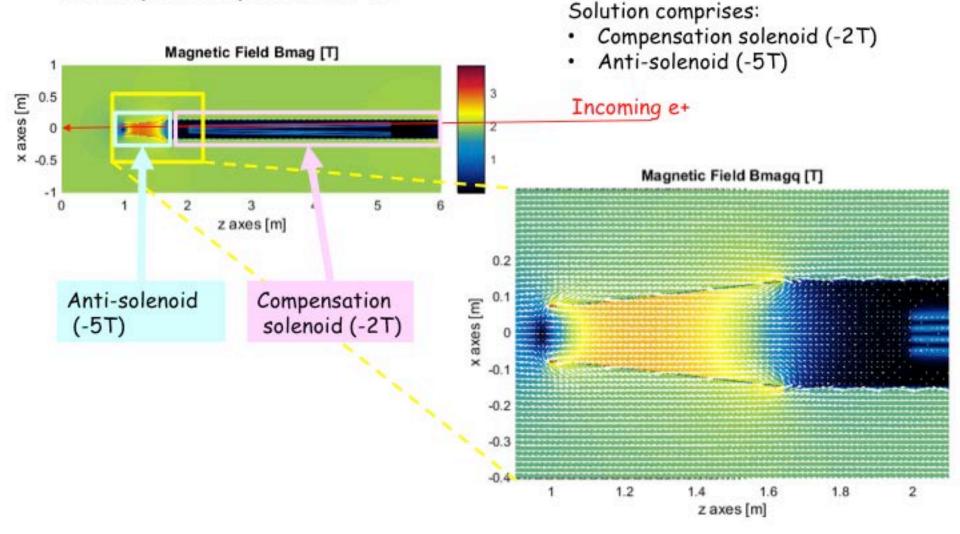
	CEPC ⁽¹⁾	TLEP ⁽²⁾
RF	250	180
Cryogenics	20	30
Power converters	90	20
Rest (cooling, ventilation, general services)	130	90
total	500MW	310MW


FCC-ee: no official value released yet

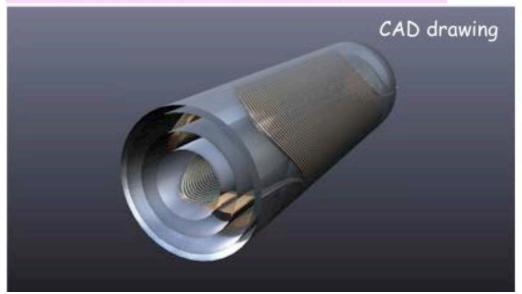
(1) W. Chou, Future Circular Colliders and R&D, EPS-HEP Conference July 22-29, 2015, Vienna, Austria

(2) TLEP power consumption in <u>arXiv:1308.2629</u> [physics.acc-ph] and <u>arXiv:1305.6498</u> [physics.acc-ph]

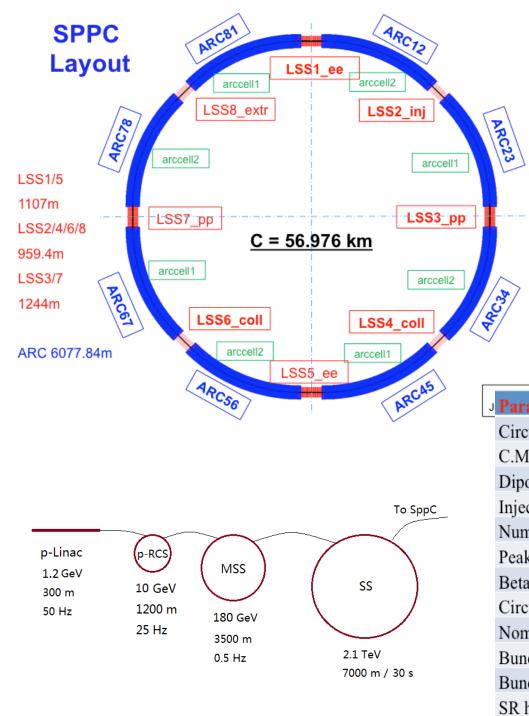
A big chunk is RF power consumption


RF power consumption

One single efficiency that, if improved, would have the largest impact: RF power source efficiency

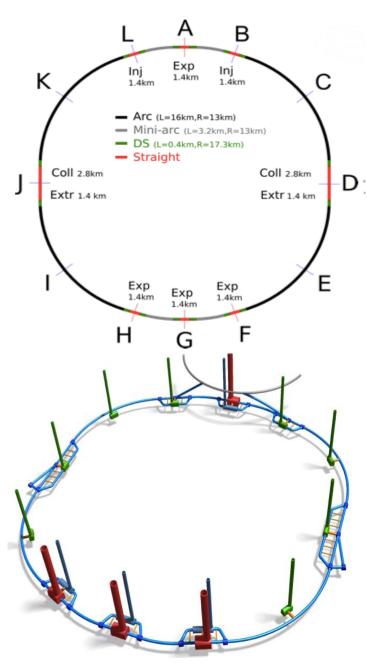

- Klystron efficiency currently ~65%, R&D to take this to ~90%
- Other technologies: IOTs (inductive Output Tube), Solid state amplifiers

- IR design a promising solution
- Various layouts tried, the following gives best performance: emittance blow up of 0.11pm for two IPs



First piece of hardware of FCC-ee at CERN

- Prototype FCC-ee final focus magnet
 20cm length
- Will be wound with available NbTi cable (cross section 4mm²)
- Fast prototyping: 3D printed in 'bluestone'
- Real magnet will be ~3m long



	¹ 1 ¹ 00- ¹ 00-100	
	09/07/15 10.45.	$\begin{array}{c} 2.30\\ 2.25\\ 2.00\\ -1.75\\ -1.50\\ -1.25\\ -1.00\\ -0.75\\ -0.50\\ -0.25\\ -0.0\\ 2500. \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		08090/15 17.07.48 2.0 E 1.8 1.6 1.6 1.4 1.4 1.4 1.0 0.6 0.6 0.4 0.0 0.0 5(m)
	$\delta d p \circ c = 0.00000$ Table name = TWISS	
		Unit
Table name = TWISS	Table name = TWISS	
Table name = TWISS	Table name = TWISS	Unit
<i>Table name = TWISS</i> reumference	Table name = TWISS Value 54.36	Unit km
<i>Table name = TWISS</i> rameter rcumference M. energy	Table name = TWISS Value 54.36 70.6	Unit km TeV
<i>Table name = TWISS</i> rcumference M. energy pole field	Table name = TWISS Value 54.36 70.6 20	Unit km TeV T
rameter rcumference M. energy pole field ection energy	Table name = TWISS Value 54.36 70.6 20 2.1	Unit km TeV T
rameter rcumference M. energy pole field ection energy umber of IPs	Table name = TWISS Value 54.36 70.6 20 2.1 2 (4)	Unit km TeV T TeV
rameter rcumference M. energy pole field ection energy umber of IPs ak luminosity per IP	Table name = TWISS Value 54.36 70.6 20 2.1 2 (4) 1.1E+35	Unit km TeV T TeV cm ⁻² s ⁻¹
rameter rcumference M. energy pole field ection energy unber of IPs ak luminosity per IP ta function at collision	Table name = TWISS Value 54.36 70.6 20 2.1 2 (4) 1.1E+35 0.75	Unit km TeV T TeV cm ⁻² s ⁻¹ m
rameter recumference M. energy pole field ection energy unber of IPs ak luminosity per IP ta function at collision reculating beam current	Table name = TWISS Value 54.36 70.6 20 2.1 2 (4) 1.1E+35 0.75 1.0	Unit km TeV T TeV cm ⁻² s ⁻¹ m
rameter recumference M. energy pole field ection energy unber of IPs ak luminosity per IP ta function at collision reculating beam current ominal beam-beam tune shift per IP	Table name = TWISS Value 54.36 70.6 20 2.1 2 (4) 1.1E+35 0.75 1.0 0.006	Unit km TeV T TeV cm ⁻² s ⁻¹ m A

Key technologies

- High-field SC magnets: 20 T dipoles
- Beam screen & vacuum: decrease SR heating
- Beam instrumentation & control
- Machine protection
- SC RF system
- Cryogenics

FCC-hh

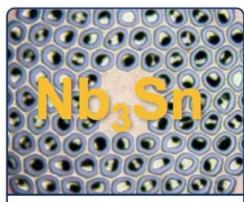
Parameter	FCC-hh		SPPC	LHC	HL LHC
collision energy cms [TeV]	100		71.2		14
dipole field [T]	16		20	8	3.3
# IP	2 main & 2		2	2 ma	ain & 2
bunch intensity [1011]	1 1 (0.2)		2	1.1	2.2
bunch spacing [ns]	25	25 (5)	25	25	25
luminosity/lp [10 ³⁴ cm ⁻² s ⁻¹]	5	~25	12	1	5
events/bunch crossing	170	~850 (170)	400	27	135
stored energy/beam [GJ]		8.4	6.6	0.36	0.7
synchrotron radiation [W/m/ aperture]	30		58	0.2	0.35

phase 1: $\beta^{*}=1.1 \text{ m}$, $\Delta Q_{tot}=0.01$, $t_{ta}=5 \text{ h}$, 250 fb⁻¹/ year phase 2: $\beta^{*}=0.3 \text{ m}$, $\Delta Q_{tot}=0.03$, $t_{ta}=4 \text{ h}$, 1 ab⁻¹/ year

luminosity $[10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ radiation damping: $\tau \sim 1 \text{ h}$ 25 20 15 10 5 0 0 5 10 15 20 time [h]

PRST-AB 18, 101002 (2015)

for both phases:

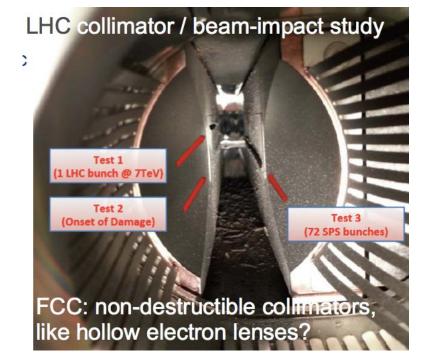

beam current 0.5 A

total synchrotron radiation power ~5 MW.

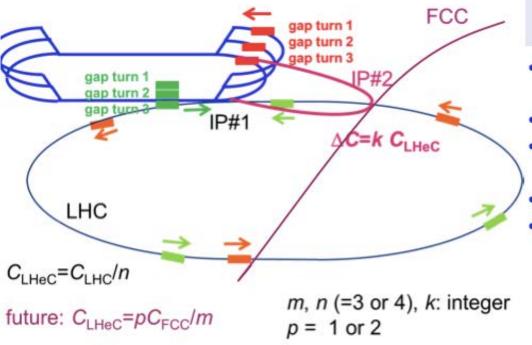
consistent with physics goal: 20 ab⁻¹ in total

Key Technologies





Conductor R&D


Magnet Design

FCC-he collider

e⁻ from ERL, reusing the "LHeC"; LHeC CDR published in J. Phys. G: Nucl. Part. Phys. 39 075001 (2012)

- h-e Higgs-boson production and decay
- H-bb coupling in WW-H production;
- Higgs self-coupling H–HH (<10% precision!? under study), t
 - lepto-quarks up to ≈4 TeV
- Bjorken x as low as 10⁻⁷ 10⁻⁸ [of interest for ultra high energy v scattering]

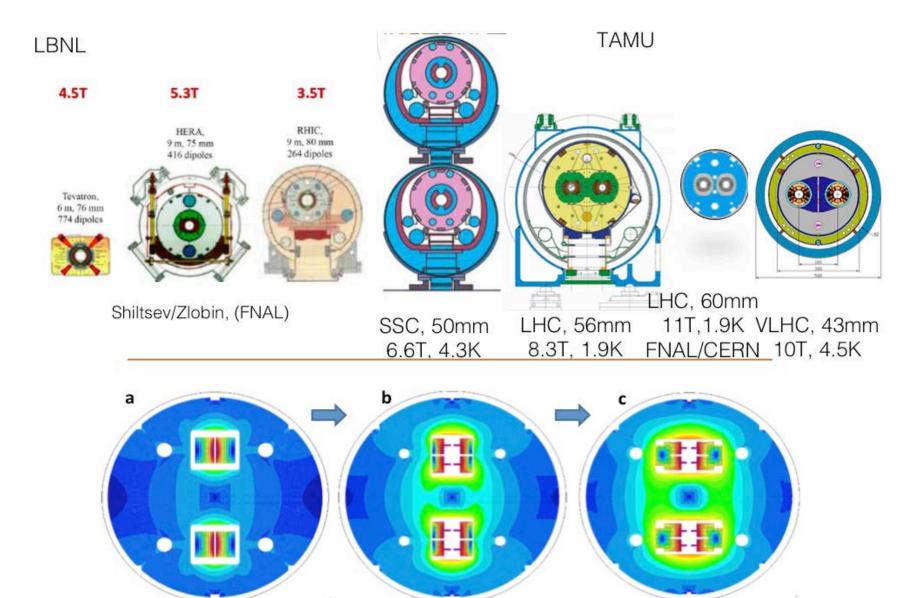
*I*_e~26 mA, σ_{x,y}*~2 μm, luminosity/nucleon ~ 3x10³⁴ cm⁻²s⁻¹

Challenges in pp collider

- Energy (*E* ~ *B*ρ)
 - General agreement ~100 TeV
 - But we should look both above and below 100 TeV for new physics
 - The results from LHC and HL-LHC will inform the choices
 - A trade-off study of <u>B vs ρ</u> is going on at CERN, IHEP, and also at this workshop

→ Money

Luminosity

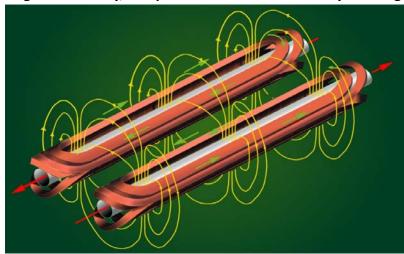

→ Accelerator Physics

- There is no general agreement on the goal
- Both FCC and SPPC aim at a reasonably achievable value close to HL-LHC (5e34 or 1.1 e35)
- But should $L \sim E^2$ be a requirement? If so, what is the reference for this scaling?
- W.r.t. HL-LHC (14 TeV, 5e34), this would require a 50-fold increase in *L*, or 2.5e36, corresponding to 7,000 events per crossing. (Scary!)
- W.r.t. SSC (40 TeV, 1e33), 5e34 for a 100 TeV machine is more than enough.
- Cost:
 - Construction cost (< \$xxB)
 - Operation cost (power consumption < 300 MW; as "green" as possible)

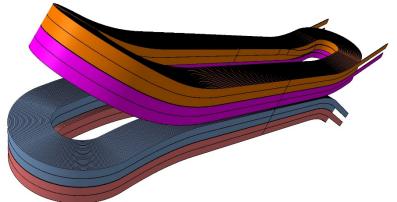
Main Technical Challenges

- Accelerator technology
 - SC magnet (increasing performance and decreasing costs)
 - Synchrotron radiation and beam screen (reducing power consumption)
 - Collimation (machine protection)
- Accelerator physics
 - \circ IR design, low β_{y}^{*} , dynamic aperture
 - o Synchrotron radiation, heat load and radiation damage lifetime
 - Beam-beam
 - o e-cloud
 - o Impedance and instabilities
 - o Ground motion
 - o MDI and background
 - Machine reliability
 - Cooling
- Non-technical:
 - Government strategic plan for S/T investment
 - Support from both HEP and non-HEP scientists

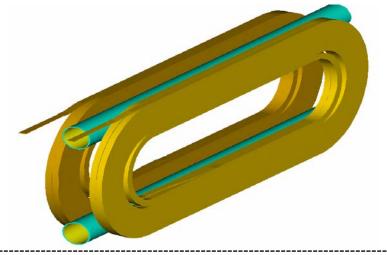
High-field SC magnet

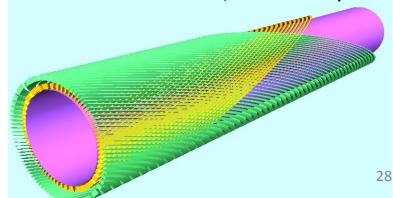


R&D Steps for SPPC Dipole Magnets

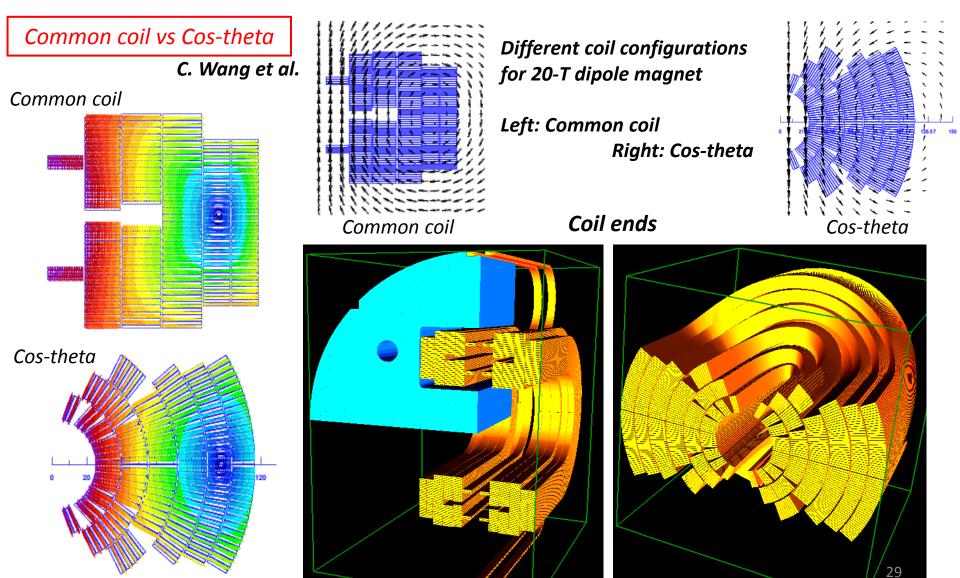

Comparison of different coil configurations

Efficiency, field quality, stress management, fabrication method...

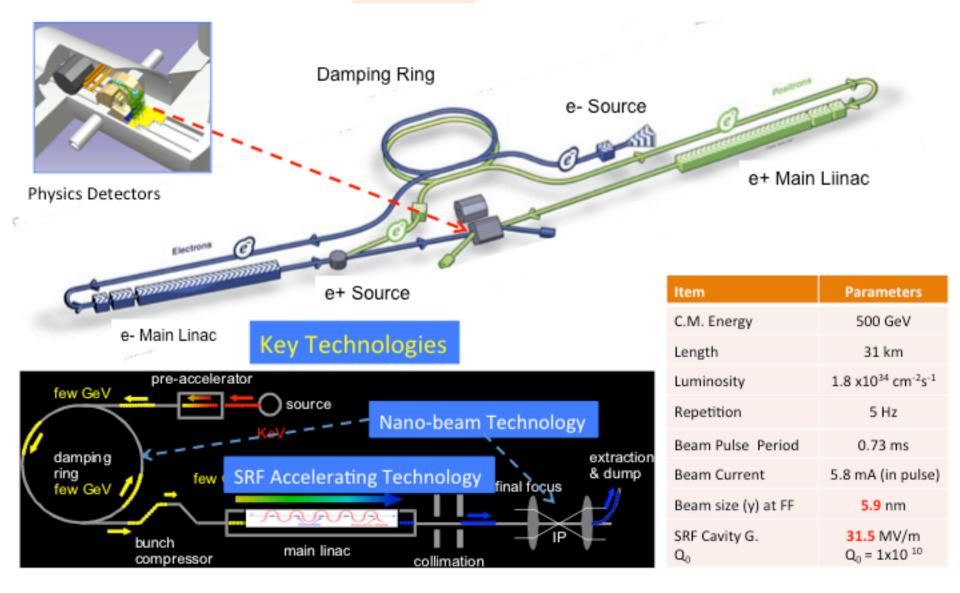

Cos-**th**eta dipole Higher efficiency, complicated ends with hard-way bending


Block type dipole Simpler structure with hard-way bending, lower efficiency

Common coil dipole Simplest structure with large bending radius, lower efficiency



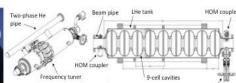
Canted cos-theta dipole Lowest stress level in coil, lowest efficiency



R&D Steps for SPPC Dipole Magnets

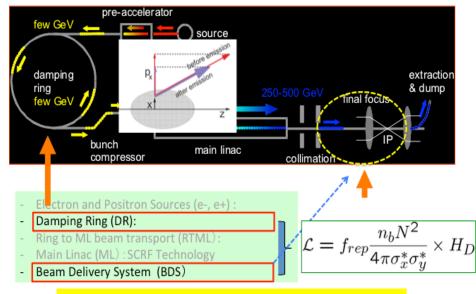
Comparison of different coil configurations

ILC/LCC


Characteristics	Parameter	Unit	Demonstrated
SRF:			
Average accelerating gradient	<u>31.5 (±20%)</u>	MV/m	DESY, <u>FNAL,</u> JLab, Cornell, KEK,
Cavity Q ₀	10 ¹⁰		
(Cavity qualification gradient	35 (±20%)	MV/m)	
Beam current	5.8	mA	DESY-FLASH), KEK-STF
Number of bunches per pulse	1312		DESY
Charge per bunch	3.2	nC	
Bunch spacing	554	ns	
Beam pulse length	730	ms	DESY, KEK
RF pulse length (incl. fill time)	1.65	ms	DESY, KEK, FNAL
Efficiency (RF→beam)	0.44		
Pulse repetition rate	5	Hz	DESY, KEK
Nano-bam:			
ILC-FF beam size (y) KEK-ATF-FF equiv. beam size (y)	5.9 37 (<mark>44 reached</mark>)	nm nm	KEK-ATF

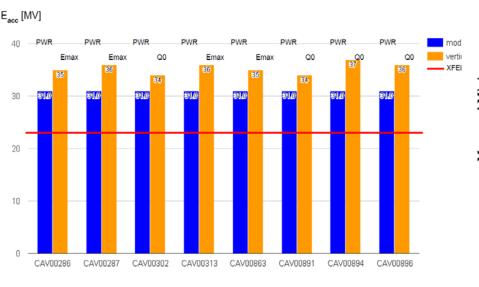
- SRF (→Report from H. Hayano)
 - E-XFEL: exceeded <u>90 % of 800 cavity production</u>, and <u>65 % of 100 cryomodule</u> assembly and testa, Excellent !! (→ Report from O. Napoli)
 - Fermilab-ASTA: reached the ILC specification gradient of ≥31.5 MV/m
 - KEK-STF2: <u>CM1+2a</u> (12 cavity string) under cold test, First 4 reaching> 35 MV/m
- Nano-beam
 - ATF2 Collab.: reached <u>44 nm</u> at the FF, closing to the primary goal of 37 nm
- CFS
 - Geological Survey & boring at a candidate IP region in progress in Tohoku
 - Tunnel Optimization Tool (TOT) being developed by CERN/KEK-ARUP cooperation
- Accelerator Design and Integration (ADI)
 - Post-TDR design update (→ see The ILC Progress Report 2015)
 - Common L* for both detectors of ILD and SiD
 - Vertical access at Detector Hall at IR points
 - Extension of ML tunnel length for optimizing e+e- collision timing and redundancy of ML SRF

SCRF Linac

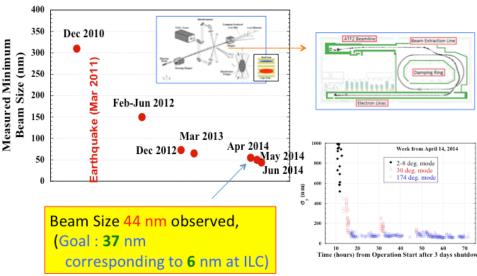


Input couple

1.3 GHz Nb 9-cellCavities	16,024
Cryomodules	1,855
SC quadrupole pkg	673
10 MW MB Klystrons & modulators	436 *
	* site dependent


Approximately 20 years of R&D worldwide → Mature technology, overall design and cost

Nano-beam Technology



The nano-beam technology progressed with a global effort Hosted at KEK (\rightarrow ATF Collaboration)

Cryomodule Operation

Progress in beam size at ATF2

General Accelerator Physics issues for colliders (Seeman & Ohmi):

• Lattices:

- x-y chromatic coupling in the IR is important: \rightarrow skew sext.
- Sextupole and skew quadrupole coupling corrections in IR
- More studies of IR error tolerances needed.
- Instabilities:
 - e-cloud to allow more bunches.
- Beam-Beam Calculations:
 - Need mores studies of non-linear beam dynamics.
 - Parasitic crossing studies
- Beam lifetimes:
 - Short beam lifetimes (~10 min) with continuous top-off inj.
- Tunes: half-integer for better collisions
- Crab cavities:
 - Crab cavities tilt bunches as expected at IP.
 - Expected luminosity gains not, so far, fully achieved.
 - Must include dynamic β effect with respect to ring apertures.
 - Crab cavity trip rates need some additional study.

• Large Piwinski Angle:

- Works in a collider.
- Allows $\Theta_x > 0.505$
- Crab waist:
 - Crab waist can potentially improve the luminosity.
 - Effects of crab sextupoles on dynamic aperture needs work.

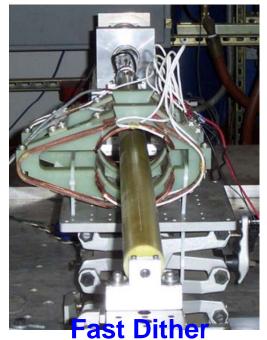
• Round beams:

- Initial beam tests look promising.
- Additional tolerance studies are needed.
- Beamstrahlung
 - Dominate the ring-based Higgs machine design
- Polarized beam

Key issues for future colliders (Seeman):

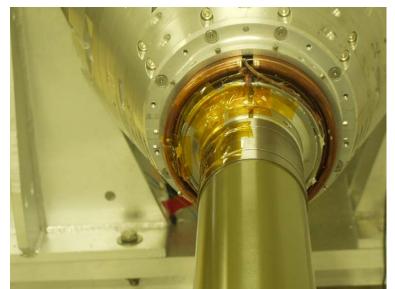
• IR design

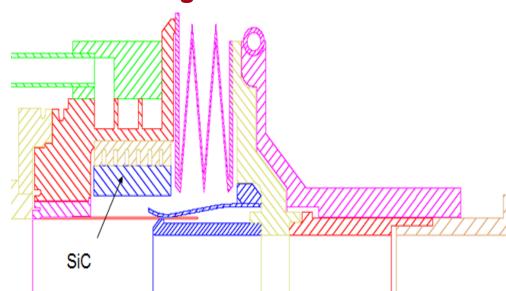
- 1 mm to 300 micron scale βy*, large betas in IR quadrupoles, quadrupoles inside the detector, collision feedback, vacuum chamber design, magnet tolerances, alignment and jitter tolerances, crab cavities, crab waist
- Test accelerators/facilities: SuperKEKB, CESR-TA, PETRA-3, vibration stabilization facility
- Technologies:
- 100+ Hz IP dither feedback on luminosity
- Superconducting magnets
- Permanent magnets
- Power supply stability
- Vibration control
- Non-linear optics


MDI

Key issue: Synchrotron radiation backgrounds, lost particle backgrounds, SR heating of vacuum chambers, radiation damage/lifetime of detectors, sensor occupancy, luminosity measurement.

Test accelerators/facilities: SuperKEKB, LHC, lab tests of high power vacuum chambers, lab tests of detector lifetime


Technologies:


IP vacuum pumping Advanced masking Rapid luminosity feedback Detector design

Feedback at SuperKEKB

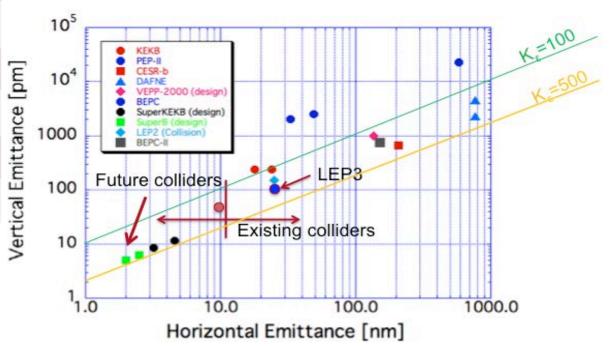
IP Vertex Be Chamber Bellows Cooling at PEP-II

Low emittance

LEP2	3500
KEKB	940
SLC	500
FCC	250
CEPC	150
ATF2, FFTB	73 (35), 77
SuperKEKB	50
ILC	5 – 8
CLIC	1 – 2

Key issue: Component tolerances, vibration control, emittance measuring hardware, active feedbacks, field nonlinearities.

Test accelerators/facilities: SuperKEKB, PETRA-3, CESR-TA, NSLS-II, lab tests of x-ray size monitors


Technologies:

300 to1 emittance tuning techniques

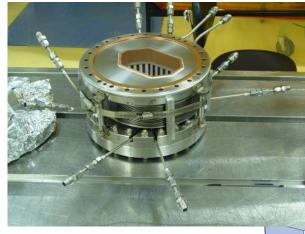
Coherent Synchrotron Radiation CSR simulations and measurements

Fast Ion Instability FII simulations and measurements Intra-Beam Scattering IBS simulations and measurements Electron Cloud Instability ECI simulations and measurements Effects of spin rotators.

Effects of beam-beam interaction on spin

High current effects

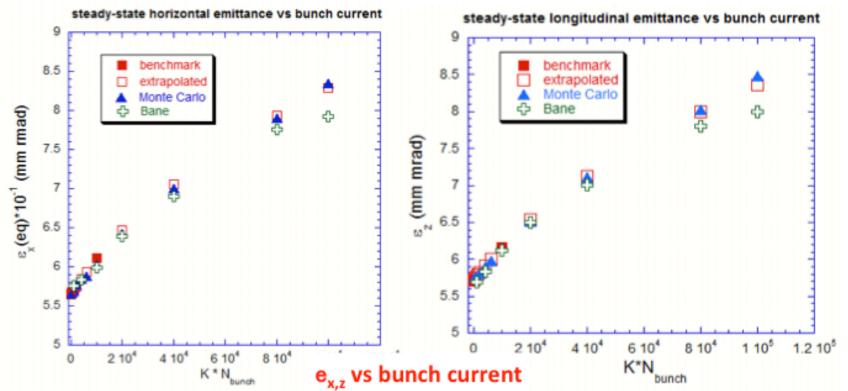
Key issues: Beam stability, high power RF, high power vacuum components, AC wall efficiency, injector capabilities, I> 1 A.



Test accelerators/facilities: SuperKEKB, CESR-TA

Technologies:

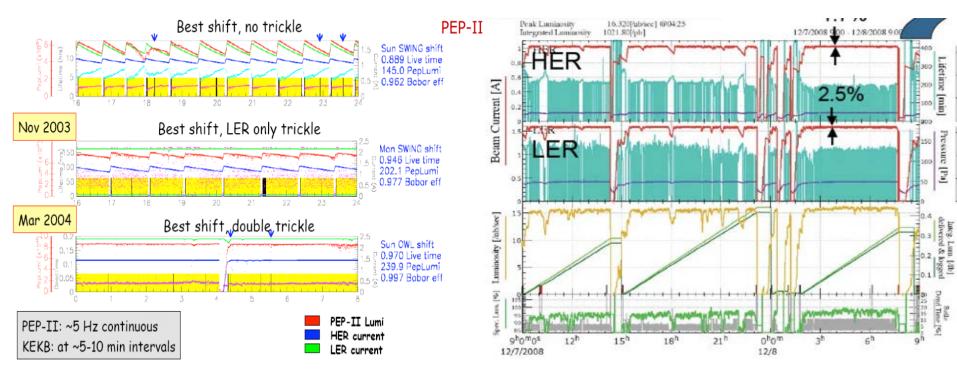
Better bunch feedbacks Electron cloud instability control Intra-beam scattering mitigations Fast ion instability mitigations More efficient klystrons High power cavities Longitudinal beam feedback



Intra-beam scattering

Three methods used, all in good agreement:

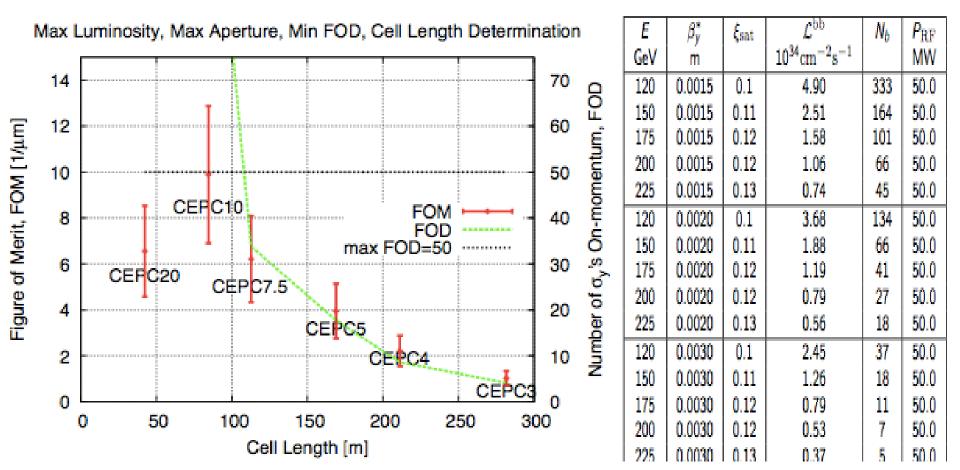
- Allows for emittance growth rates estimate and for emittance time evolution estimate
- 6D MonteCarlo → more accurate, all of above, will include non-gaussian tails



High Beam Power

- Higher currents and shorter bunches lead directly to much higher wakefield effects
 - HOM power and CSR
- Vacuum chamber impedances must be minimized
 - Causes bunch lengthening
 - Hard to do a lot better than present B-factories
- All components must be water-cooled
 - Again, difficult to do much better than present B-factories
- SR power levels increase with higher beam currents causing higher total beam losses
 - More RF power needed to restore the lost beam energy more plug power

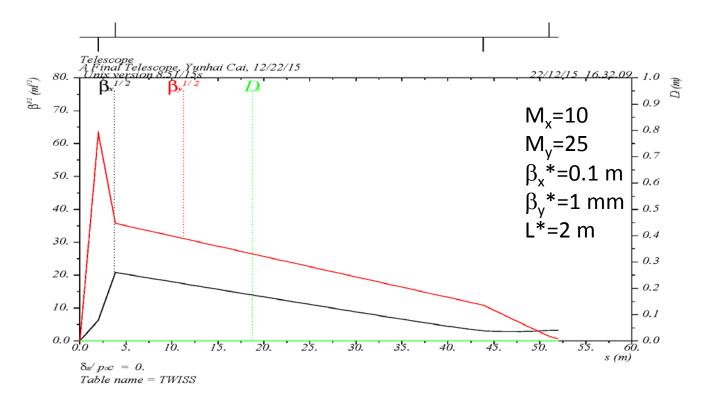
Beam lifetime


- Beam-beam, luminosity (Bhabha), beamstahlung, Touschek, vacuum, etc, determine the beam lifetime ~ 10 min or more.
- Full energy and top-off injection are required.

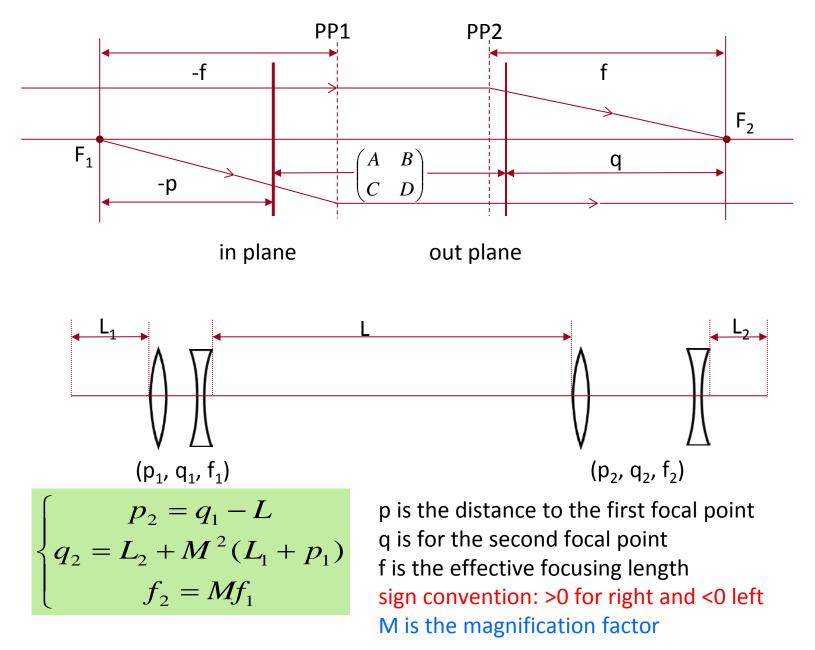
Beam injection & booster

AP studies to future lepton collider

- Lattice optimization
 - Cell length optimization



- Local chromaticity compensation is unnecessary (Talman), or not?
- Choice of vertical tune, momentum acceptance could be more than 3%.
- More IP free spaces brings large momentum accept.
- Finite dispersion and bends near the IP are also no needs, so synchrotron radiation incident on detector is dramatically reduced.
- For CEPC case, optimal cell length is 82 m, much longer than the current design.


AP studies to future lepton collider

IP

• Improvement on DA with a final telescope

Parameters: $L_1=2 \text{ m}$, $d_1=1.85541 \text{ m}$, L=40 m, $d_2=7.14276 \text{ m}$, $L_2=1 \text{ m}$, $f_1=1.36174 \text{ m}$, $f_2=2.51748 \text{ m}$, $f_3=15.11842 \text{ m}$, $f_4=17.01195 \text{ m}$

The subsystems do not have to be doublets or thin lens. Moreover, these conditions are valid both in the horizontal and vertical planes.

Approximated Transfer Maps

Chromatic Aberrations in Final Telescope

-SLAC

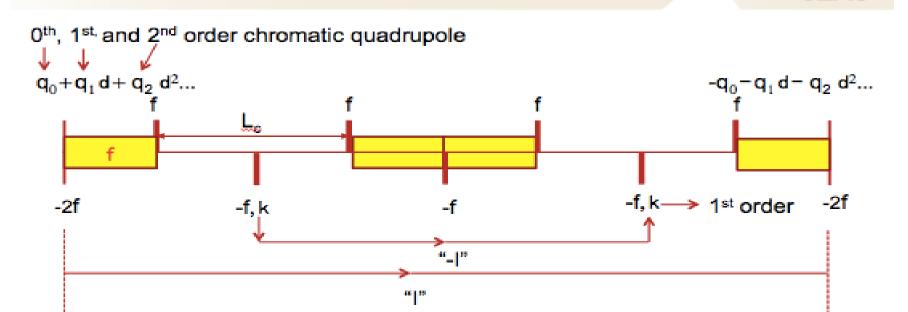
A map up to the second order in the vertical plane:

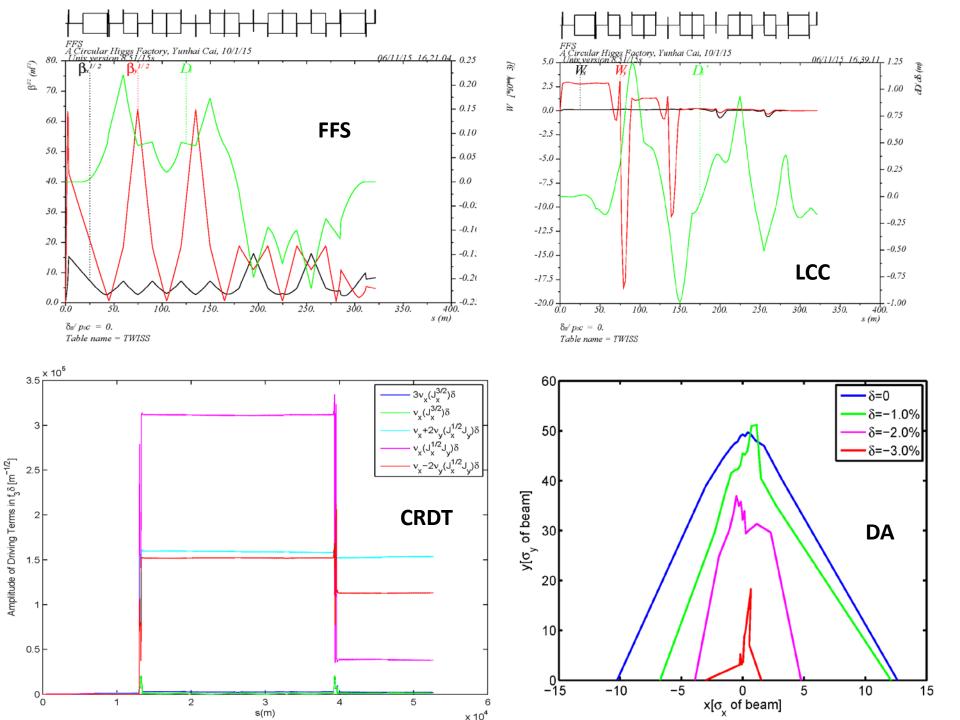
$$\begin{cases} M_{3} = -My + \frac{ML(L_{1} + p)}{f^{2}} y\delta + \frac{f^{2}(L_{2} + M^{2}L_{1}) + M^{2}L(L_{1} + p)^{2}}{Mf^{2}} p_{y}\delta \\ M_{4} = -\frac{1}{M} p_{y} - \frac{L}{Mf^{2}} y\delta - \frac{L(L_{1} + p)}{Mf^{2}} p_{y}\delta \end{cases}$$

An approximated map:

$$\begin{cases} M_3 = -My + ML_1 p_y \delta \\ M_4 = -\frac{1}{M} p_y \end{cases}$$

L₁+p=0, implies that the first focus point of the final doublet is the interaction point. That is a very good approximation. Also assumed M>>1


The simpler map leads to:


$$\begin{cases} \beta_{y}(\delta) = M^{2}\beta_{y}^{*}[1 + (\frac{L^{*}}{\beta_{y}^{*}}\delta)^{2}] \\ \alpha_{y}(\delta) = \frac{L^{*}}{\beta_{y}^{*}}\delta \\ \psi_{y}(\delta) = \pi - \tan^{-1}(\frac{L^{*}}{\beta_{y}^{*}}\delta) \end{cases}$$

Back to the common notation, we use $L_1=L^*$. We have captured the most important chromatic aberrations in the final telescope. The first-order terms agree with the well-known results derived using the perturbation method in a periodical system. The large second-order term in the beta function was discussed extensively by Karl Brown. Here we show that the phase advance has to be corrected up to third order for a very small vertical beta function at the IP.

SI AC

Chromatic Correction System in Vertical Plane

• Nonlinearity effect to DA (Levichev)

Source	Factors	Scheme
Low vertical	- High FF chromaticity (Q and eta) requires strong local correction	H-on ^{*)}
beta at IP	sextupoles.	NB
	- Kinematic effects	CW
	- Large beta in FF quads emphasizes fringe field effects and field quality	
	tolerance.	
Large collision	- Detector solenoid brings large betatron coupling.	NB
angle (>20 mr) ^{**)}	 Solenoid fringes generate nonlinear field components. 	CW
	- Low emittance needed for large luminosity limits the arc DA (similar to	
	synchrotron light source)	
Full CW scheme	- Strong CW sextupoles.	CW
High energy	Radiation effects:	Any
	- Strong damping improve DA.	
	 Saw-tooth effect distorts COD like pretzel and can reduce DA. 	

QD0 Fringe Fields

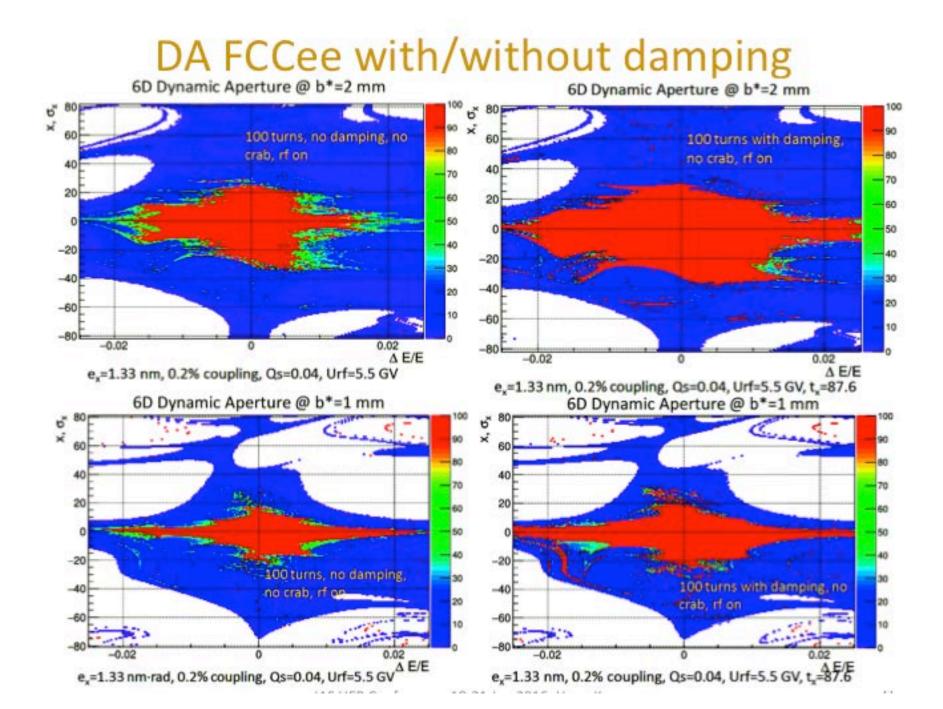
Quadrupole fringe field nonlinearity is defined by

$$H = -k'_{1}(s)x^{2}yp_{y}/2 + k''_{1}(y^{4} - 6x^{2}y^{2})/24$$

$$\alpha_{yy}^{f} = \frac{1}{16\pi} k_{10} (\beta_{y1} \beta_{y1}' - \beta_{y2} \beta_{y2}')$$

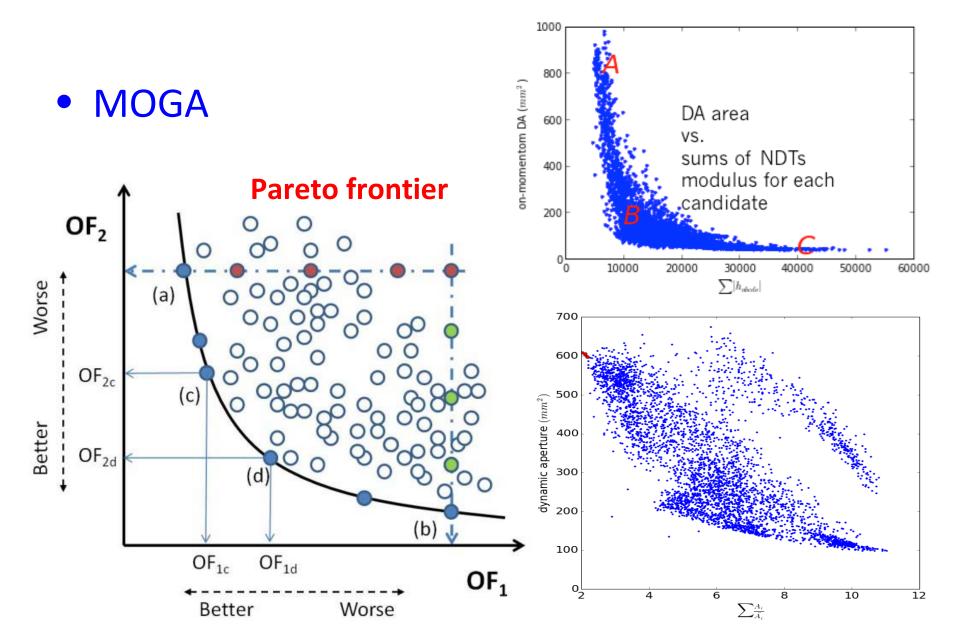
$$\alpha_{yy}^{f} \approx -\frac{1}{4\pi} k_{10} \frac{L^{*3}}{\beta^{*2}} = -\frac{1}{4\pi} k_{10} L^{*} \xi^{*2}$$

Chromatic sextupoles


Vertical chromatic sextupole pair separated by –I transformer gives the following coordinate transformation in the first order^{*)}

Pair of sextupoles
 Octupole

$$y = y_0$$
 $y = y_0$
 $p_y = -p_{y0} - \frac{(K_2 L_s)^2 L_s}{6} (y_0^3 + x_0^2 y_0)$
 $p_y = p_{y0} - \frac{K_3 L}{6} (y_0^3 - 3x_0^2 y_0)$


By analogy to the octupole and using the expression for the FF chromaticity we found for the vertical detuning (2 pairs)

$$\alpha_{yy}^{sp} = -\frac{1}{16\pi} (K_2 L_s)^2 L_s \beta_y^2 \approx -\frac{1}{4\pi} \frac{L_s}{\eta_s^2} \left(\frac{L^*}{\beta^*}\right)^2 = -\frac{1}{4\pi} \frac{L_s}{\eta_s^2} \xi^{*2}$$

- DA limitation is a challenging problem. More efforts are needed to enlarge DA.
- Limiting factors: Vertical sextupole chromatic section at IR, FF quads fringes, and arc sext.
- Local + global compensation can give reasonable DA.
- Damping is important to increase the DA at high energy ring.
- A lot of problems are still remaining...

Other possible ways to improve DA

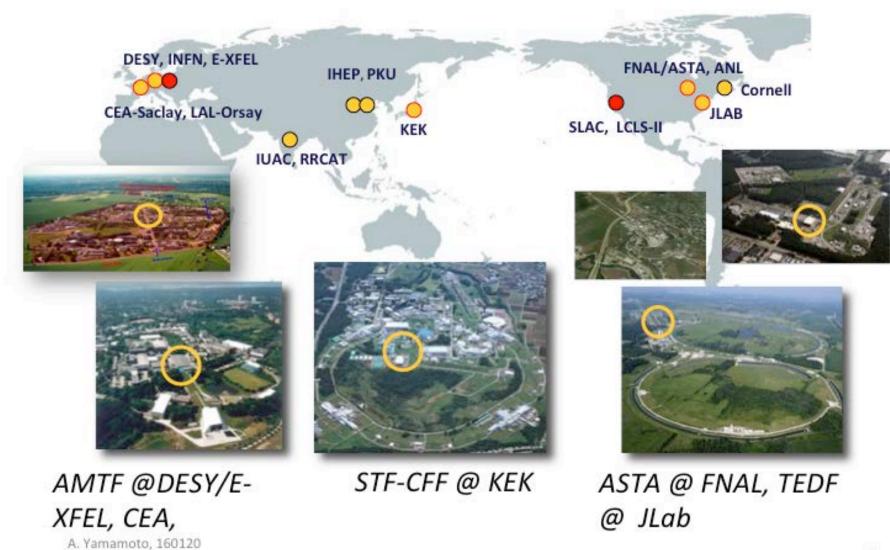
- Objective:
 - Chromaticity control
 - Longitudinal stability
 - DA & energy acceptance
- Need parallel computation
- Apply to big machine? Efficient? CPU time?

- Other AP issues:
 - Beam-beam simulation (Ohmi, Zhang, Shatilov)
 - Polarization (Koop, Yokoya)
 - Energy calibration (Muchnoi)
 - Crabbed waist (Milardi, Seeman)
 - Etc...

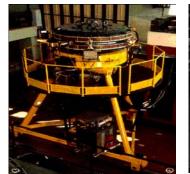
Collaborations

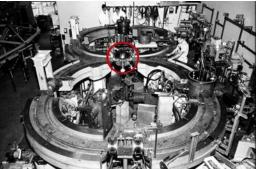
• CEPC:

- IAC founded, 1st meeting held on Sept. 14-15, 2015
- Established collaborations with KEK, BINP, SLAC, BNL, LBNL, INFN, LAL, HKUST, etc.
- Collaborate with institutions and universities in China, mainly on accelerator technologies (SRF, SC magnet,
- More collaborations are needed.


• FCC:

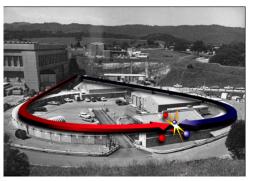
70 institutes 26 countries + EC

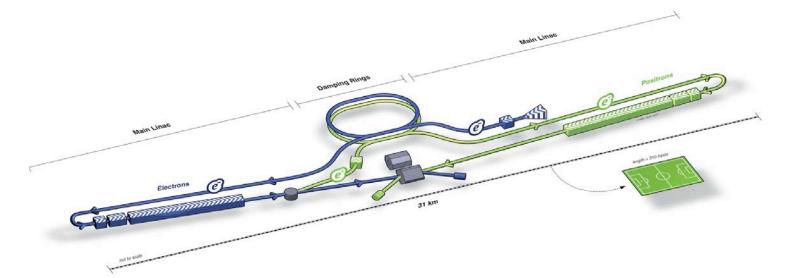


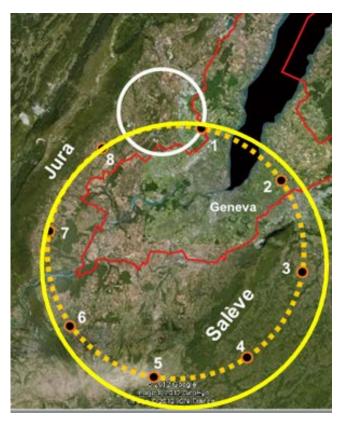


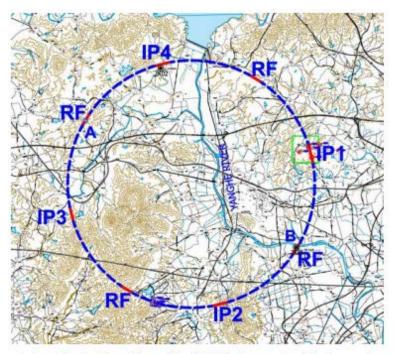
ILC: SRF Facilities anticipated for Hub/Consortium

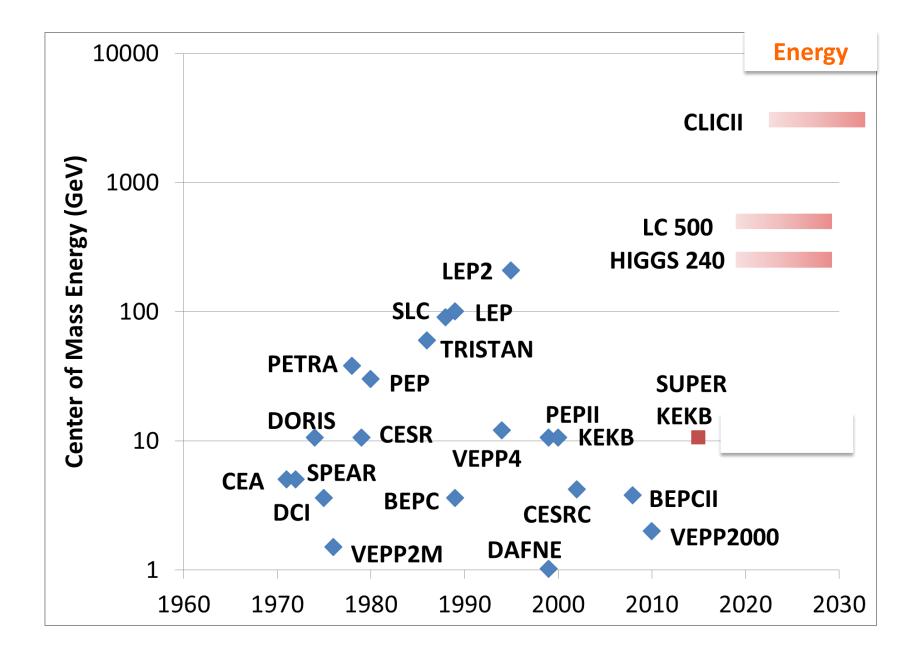
The road to the future collider

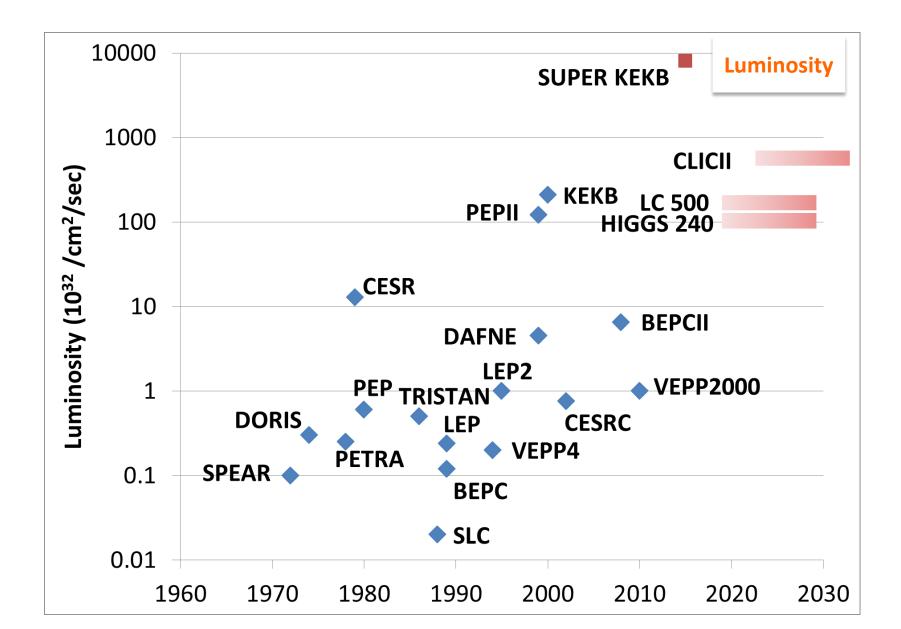


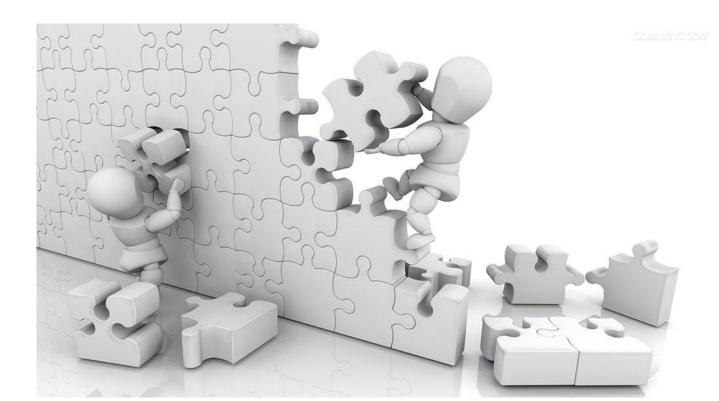












: A hypothetical location of the CEPC ring on the Qinghuangdao area

All workers on colliders unite!

